Smoothness of Lipschitz minimal intrinsic graphs in Heisenberg groups Hn, n > 1

نویسندگان

  • Luca Capogna
  • Giovanna Citti
  • Maria Manfredini
چکیده

We prove that Lipschitz intrinsic graphs in the Heisenberg groups Hn, with n > 1, which are vanishing viscosity solutions of the minimal surface equation are smooth.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Smoothness of Lipschitz Minimal Intrinsic Graphs in Heisenberg Groups

We prove that Lipschitz intrinsic graphs in the Heisenberg groups Hn, with n > 1, which are vanishing viscosity solutions of the minimal surface equation are smooth.

متن کامل

ar X iv : 0 80 4 . 34 08 v 1 [ m at h . A P ] 2 1 A pr 2 00 8 SMOOTHNESS OF LIPSCHITZ MINIMAL INTRINSIC GRAPHS IN HEISENBERG GROUPS

We prove that Lipschitz intrinsic graphs in the Heisenberg groups H , with n > 1, which are vanishing viscosity solutions of the minimal surface equation are smooth.

متن کامل

Intrinsic Lipschitz Graphs in Heisenberg Groups and Continuous Solutions of a Balance Equation

In this paper we provide a characterization of intrinsic Lipschitz graphs in the subRiemannian Heisenberg groups in terms of their distributional gradients. Moreover, we prove the equivalence of different notions of continuous weak solutions to the equation φy + [φ/2]t = w, where w is a bounded function.

متن کامل

The Bernstein Problem for Intrinsic Graphs in Heisenberg Groups and Calibrations

In this paper we deal with some problems concerning minimal hypersurfaces in Carnot-Carathéodory (CC) structures. More precisely we will introduce a general calibration method in this setting and we will study the Bernstein problem for entire regular intrinsic minimal graphs in a meaningful and simpler class of CC spaces, i.e. the Heisenberg group H. In particular we will positevily answer to t...

متن کامل

ar X iv : 0 80 4 . 34 06 v 1 [ m at h . A P ] 2 1 A pr 2 00 8 REGULARITY OF NON - CHARACTERISTIC MINIMAL GRAPHS IN THE HEISENBERG GROUP

Minimal surfaces in the sub-Riemannian Heisenberg group can be constructed by means of a Riemannian approximation scheme, as limit of Riemannian minimal surfaces. We study the regularity of Lipschitz, non-characteristic minimal surfaces which arise as such limits. Our main results are a-priori estimates on the solutions of the approximating Riemannian PDE and the ensuing C∞ regularity of the su...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010